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This paper shows how particle hopping models �t into the context of tra�c 
ow theory, that is,

it shows connections between 
uid-dynamical tra�c 
ow models, which derive from the Navier-

Stokes-equations, and particle hopping models. In some cases, these connections are exact and have

long been established, but have never been viewed in the context of tra�c theory. In other cases,

critical behavior of tra�c jam clusters can be compared to instabilities in the partial di�erential

equations. Finally, it is shown how all this leads to a consistent picture of tra�c jam dynamics. |

In consequence, this paper starts building a foundation of a comprehensive dynamic tra�c theory,

where strengths and weaknesses of di�erent models (
uid-dynamical, car-following, particle hopping)

can be compared, and thus allowing to systematically chose the appropriate model for a given

question.

I. INTRODUCTION

Tra�c jams have always been annoying. At least in the industrialized countries, the standard reaction has been to

expand the transportation infrastructure to match demand. In this phase of fast growth, relatively rough planning

tools were su�cient. However, in the last years most industrialized societies started to see the limits of such growth. In

densely populated areas, there is only limited space available for extensions of the transportation system; and we face

increasing pollution and growing accident frequencies as the downsides of mobility. In consequence, planning is now

turning to a �ne-tuning of the existing systems, without major extensions of facilities. This is for example re
ected

in the United States by the Clean Air Act and by the ISTEA (Intermodal Surface Transportation and E�ciency Act)

legislation. The former sets standards of air quality for urban areas, whereas the latter forces planning authorities to

evaluate land use policies, intermodal connectivity, and enhanced transit service when planning transportation.

In consequence, planning and prediction tools with a much higher reliability than in the past are necessary. Due to

the high complexity of the problems, analytical approaches are infeasible. Current approaches are simulation-based

(e.g. [1{4]), which is driven by necessity, but largely enhanced by the widespread availability of computing power

nowadays. Yet, also for computers one needs good simpli�ed models of the phenomena of interest: Just coding a

perfect representation of reality into the computer is not possible because of limits of knowledge, limits of human

resources for coding all these details, and because of limits of computational resources.

Practical simulation has to observe trade-o�s between resolution, �delity, and scale [5]. Resolution refers to the

smallest entities (objects, particles, processes) resolved in a simulation, whereas �delity means the degree of realism

in modeling each of these entities, and scale means the (spatial, temporal, : : :) size of the problem. It is empirically

well known, for example from 
uid dynamics, that to a certain extent a low �delity high resolution model (lattice gas

automata [6,7]) can do as well as a high �delity low resolution model (discretization of the Navier-Stokes-equations),

or in short: Resolution can replace �delity.
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Current state-of-the-art tra�c modeling has a �xed unit of (minimal) resolution, and that is the individual traveler.

Since one is aiming for rather large scales (for example the Los Angeles area consists of approx. 10 million potential

travelers), it is rather obvious that one has to sacri�ce �delity to achieve reasonable computing times.

One important part of transportation modeling is road tra�c. For example in Germany, road tra�c currently

contributes more than 81% of all passenger and 52.7% of all freight transportation [8]. And despite widespread

e�orts, the share of road transportation is still increasing. For that reason, it makes sense to start with road tra�c

when dealing with transportation systems.

Putting these arguments together, one thing which is needed for large scale transportation simulations is a minimal

representation of road tra�c. Particle hopping models clearly are candidates for this, and even if not, building a

minimal theory of road tra�c is certainly the right starting point.

This paper shows how particle hopping models �t into the context of tra�c 
ow theory. It starts out with a historical

overview of tra�c 
ow theory (Section II), followed by a systematic review of 
uid-dynamical models for tra�c 
ow

(Section III) starting from the Navier-Stokes-equations. Section IV de�nes di�erent particle hopping models which are

of interest in the context of tra�c 
ow. Section V then shows the di�erent connections between the 
uid-dynamical

tra�c 
ow models and particle hopping models. In some cases, these connections are exact and have long been

established, but have never been viewed in the context of tra�c theory. In other cases, critical behavior of tra�c

jam clusters can be compared to instabilities in the partial di�erential equations. Finally, it is shown how this leads

to a consistent picture of tra�c jam dynamics (Section VI). A discussion of the consequences for tra�c simulations

(Section VII) serves as summary and discussion, and a collection of open questions (Section VIII) conclude the paper.

II. HISTORICAL OVERVIEW OF TRAFFIC THEORY

Vehicular tra�c has been a widely and thoroughly researched area in the 1950s and 60s. For a review of tra�c theory,

see, for example, one of [9{11].

Vehicular tra�c theory can be broadly separated into three branches: Tra�c 
ow theory, car-following theory, and

one more recent addition: particle hopping models.

A. Tra�c 
ow theory

Tra�c 
ow theory is concerned with �nding relations between the three fundamental variables of tra�c 
ow, which are

velocity v, density �, and current or throughput or 
ow j. Only two of these variables are independent since they are

related through j = � v. Possible units for these variables are [v] = km=h, [�] = vehicles=km, and [j] = vehicles=hour.

The �rst approach of tra�c 
ow theory historically was to search for time-independent relations between j, � and

v. These relations are the so-called fundamental diagrams. The form of such a relation is, though, still debated in

the tra�c 
ow literature [12,13]. The problem stems mainly from the fact that reality measurements are done in

non-stationary conditions. There, only short time averages make sense, and they usually show large 
uctuations. I

will at the end of the paper discuss how a dynamic, particle based description of tra�c can resolve these di�culties.

The second step of tra�c 
ow theory was to introduce a dynamic, i.e. time-dependent description. This was achieved

by a well-known paper from Lighthill and Whitham, published in 1955 [14]. This paper introduced a description
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based on the equation of continuity, together with the assumption that 
ow (or velocity) depend on the density only,

i.e. there is no relaxation time, velocity adapts instantaneously to the surrounding density.

Prigogine, Herman, and coworkers developed, in the 1960s, a kinetic theory for tra�c 
ow [15]. They derived the

Lighthill-Whithamsituation as a limiting case of the kinetic theory. Kinetic theory anticipates many of the phenomena

(such as start-stop-waves) which come up in later work, but probably because the mathematics of working in this

framework is fairly laborious, this theory has not been developed any further until recently [16,17].

Instead, in 1971, Payne replaced the assumption of instantaneous adaption in the Lighthill-Whitham theory by an

equation for inertia, which is similar to a Navier-Stokes-equation [18]. K�uhne, in 1984, added a viscosity term and

initiated using the methods of nonlinear dynamics for analyzing the equations [19{22].

In a parallel development, Musha and Higuchi proposed the noisy Burgers equation as a model for tra�c and backed

that up by measurements of the power spectrum of tra�c count data [23].

In Section III, these 
uid-dynamical models will be put into a common perspective.

B. Car-following theory

Car-following theory regards tra�c from a more microscopic point of view: The behavior of each vehicle is modeled

in relation to the vehicle ahead. As the de�nition indicates, this theory concentrates on single lane situations where

a driver reacts to the movements of the vehicle ahead of him. Many car-following models are of the form

a(t + T ) /
v(t)m

[�x(t)]l
��v(t) ; (1)

where a and v are the acceleration and velocity, respectively, of the car under consideration, �x is the distance to the

car ahead, �v is the velocity di�erence to that car, and m and l are constants. T is a delay time between stimulus

and response, which summarizes all delay e�ects such as human reaction time or time the car mechanics needs to

react to input.

Other examples for car-following equations are v(t+ T ) / �x [24,25] or a(t) / V [�x(t)]� v(t)] [26,27], where V [�x]

gives a preferred velocity as a function of distance headway. See also [28{30].

Mathematically, parts of this theory are very similar to the treatment of atomic movements in crystals, and give

results about the stability of chains of cars (\platoons") in follow-the-leader situations.

One of the achievements of tra�c theory of this period was that relations between car-following models and static


ow-density-relations were derived.

Car-following theory will not be treated any further in this paper.

C. Particle hopping models

A more recent addition to the development of vehicular tra�c 
ow theory are particle hopping models. In particle

hopping models, a road is represented as a string of cells, which are either empty, or occupied by exactly one particle.

Movement takes place by hopping between cells. If all particles are updated simultaneously (parallel update, see

below), then the particle hopping model treated in this paper formally are also cellular automata (CA).
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The technical di�erence between car-following and CA models for tra�c 
ow is that in the latter, space and time

are discrete, whereas in the mathematical treatment of car-following models, they are continuous. Simulations of

car-following models (e.g. [26{29,108]) discretize time but use continuous space.

Actually, the �rst proposition of a CA model for tra�c is from Gerlough in 1956 [31] and has been further extended

by Cremer and coworkers [32,33]. They implemented fairly sophisticated driving rules and also used single-bit-coding

with the goal to make the simulation fast enough to be useful for real-time tra�c applications. The bit-coded

implementation, though, made it too impractical for many tra�c applications.

In 1992, CA models for tra�c were brought into the statistical physics community. Biham and coworkers used

a model with maximum velocity one for one- and for two-dimensional tra�c [34]. One-dimensional here refers to

roads etc., and includes multi-lane tra�c. Two-dimensional tra�c in the CA context usually means tra�c on a 2-d

grid, as a model for tra�c in urban areas. Nagel and Schreckenberg introduced a model with maximum velocity

vmax = 5 for one-dimensional tra�c, which compared favorably with real world data [35]. Both approaches were

further analyzed and extended in a series of subsequent papers, both for the one-dimensional [28,36{62] (see also [63])

and the two-dimensional (see, e.g., [64{66]) investigations.

That work had two motivations at that time: The primary motivation was again computational speed, but this time to

make Monte Carlo analysis possible. The second motivation was to keep the models simple enough to allow analytical

treatment. An additional third motivation was added more recently: CA-methodology is planned to be used as a

high-speed option in tra�c projects in Germany [2] and in the United States [1].

From a theoretical point of view, the methodology of particle hopping models lies between 
uid-dynamical and car-

following theories and helps to clarify the connections between these approaches. One contribution of this paper is

to further improve upon the current understanding and to clarify the relations between particle-hopping models and


uid-dynamical models for tra�c 
ow.

III. FLUID-DYNAMICAL MODELS FOR TRAFFIC FLOW

This section reviews 
uid-dynamical models for tra�c 
ow. The models can broadly be distinguished by whether they

consider the e�ects of inertia. Models without considering inertia can be derived from the equation of continuity when

velocity or current are considered as functions of the density only. Models considering inertia formally are Navier-

Stokes-equations, with a car-speci�c force term which takes into account that drivers want to drive at a certain desired

speed. If the time constant of this force term is set to zero, i.e. assuming instantaneous adaption to the surrounding

density, the models revert to the non-inertia case.

A. General equations

Papers on tra�c 
ow theory usually start with stating the equations under consideration, without setting them

in perspective. I will therefore in this paper attempt a more fundamental approach, similar to conventional 
uid-

dynamics. The precise presentation of most of these equations is necessary anyhow because the particle-hopping

models presented later relate to these equations.

One might use the standard 
uid-dynamical conservation equations for mass and momentum as a starting point for

a 
uid-dynamical description of tra�c:

4



@t�+ @x(� v) = 0 (equation of continuity) (2)

and

dv

dt
� @tv + v � @xv = F=m (momentum equation) ; (3)

where � is the density and v the velocity. d=dt is the individual (Lagrangian) derivative, F is the force acting on mass

m. Eq. 2 describes mass conservation; Eq. 3 describes the fact that the momentum of a point of mass may only be

changed by a force. Obviously, for tra�c, F has to include vehicle and driving dynamics.

B. Fluctuations

A standard �rst step in 
uid-dynamics [67] is to assume that v and � 
uctuate statistically around average values hvi

and h�i, i.e.

v = hvi + v0 ; hv0i = 0 (4)

and

� = h�i + �0 ; h�0i = 0 : (5)

In this case, one only assumes that hvi and h�i 
uctuate slowly in space and time; for the general subtleties of hydro-

dynamical theory see, e.g., [68]. Inserting these relations into (2) and (3) and subsequent averaging over the whole

equations (e.g. h@x[(h�i + �0) (hvi + v0)]i = @xh�ihvi + @xh�0v0i) yields

@th�i + @xh�ihvi + @xh�
0v0i = 0 (6)

and

@thviL + hviL@xhviL +
1

2
@xhv

0v0i = hF=mi : (7)

One often parameterizes averaged 
uctuations by the corresponding gradient (see, e.g., [67]) hv0A0i � ��@xhAi,
1

which leads to the set of equations

@t�+ @x(� v)= D@2x�

@tv + v @xv = � @2xv + F=m ;

(8)

where, according to convention, the averaging brackets have been omitted, and the di�usion coe�cient D as well as

the (kinematic) viscosity � are assumed to be independent of x and t. It should be noted that similar di�usion terms

can also be obtained from other arguments.

1The idea behind this parametrization is that, if there is more than average of quantity A (i.e. A > hAi or A0 � A� hAi > 0)
at one location, and less than average of quantity A at a neighboring location, then velocity 
uctuations represented by v0 tend
to equilibrate this, and that this happens, to �rst order, linearly in the concentration gradient of A. (Think of A as, say, red
color.)
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C. Lighthill-Whitham-theory and kinematic waves

If one assumes that the velocity is a function of density only (v = f(�)), then the momentum equation is no longer

necessary. This corresponds to instantaneous adaption; the particles (or cars) carry no memory. Using without loss

of generality the current j(�) � � v(�), and setting in addition D = 0, from (8) one obtains

@t� + j0(�) @x� = 0 (9)

(Lighthill-Whitham-equation [14]), where j0 = dj=d�. For a review of this theory, see, e.g., [14,69].

The equation can be solved by the ansatz �(x; t) = �(x � ct) with

c = j0(�) : (10)

This allows the solution of the characteristics (see, e.g., [69]): A region with density � travels with constant velocity

c = j0(�), and the resulting straight line in space-time is called characteristic. When j(�) is convex, i.e. j00 < 0, then

for regions of decreasing density (�(x1) > �(x2) for x1 < x2) the characteristics separate from each other. In regions

of increasing density, the characteristics come closer and closer together. When two characteristics touch each other,

a density discontinuity appears at this place (a front), which moves with velocity

c =
j(x2) � j(x1)

�(x2) � �(x1)
=

�j

��
: (11)

Note that formally the 
uid-dynamical description has broken down here because both � and j are no longer continuous

functions of x.

An illustrative example is a queue, such as at a red light. When the light turns green, the out
ow front quickly

smoothes out, whereas the in
ow front remains steep.

Note that usually at maximum 
ow c = j0 = 0. Structures which operate at maximum 
ow do not move in space.

Leibig [70] gives results of how a random initial distribution of density steps in a closed system evolves towards two

single steps according to the Lighthill-Whitham-theory.

D. Lighthill-Whitham with dissipation

Adding dissipation to the Lighthill-Whitham-equation leads to

@t� + j0(�) @x� = D@2x� : (12)

The solution of this equation is again a non-dispersive wave with phase and group velocity j0. The di�erence is that

D introduces dissipation (damping) of the wave: The amplitude decays as e�Dk2 , where k is the wavenumber. This

re
ects the intuitively reasonable e�ect that tra�c jams should tend to dissolve under homogeneous and stationary

conditions.
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E. The nonlinear di�usion (Burgers) equation

For a further development, j(�) has to be speci�ed. Since we are mostly interested in the behavior of tra�c near

maximum throughput, we start by choosing the simplest mathematical form which yields a \well-behaved" maximum:

j(�) = vmax �(1 � �) ; (13)

which, in tra�c science, is called the Greenshields-model (see [10]). vmax is, in principle, a free parameter, but it has

an interpretation as the maximum average velocity for � ! 0.Mathematicians would set vmax = 1; tra�c scientists

use 1 � �=�jam for the term in parenthesis. �jam is the density of vehicles in a jam. The maximum current jmax is

reached at �(jmax) = 1=2.

Substituting (13) into (12) yields

@t� + vmax @x� � 2vmax � @x� = D @2x� : (14)

Musha and coworkers [23] have shown that by introducing a linear transformation of variables

x = vmax t
0 � x0 ; t = t0 ; (15)

one obtains

@t0� + 2 vmax � @x0� = D@2x0� ; (16)

which is the (deterministic) Burgers equation [71].

The transformation (15) does two things:

(1) Transformation to a coordinate system which is moving with uniform velocity vmax, that is, vehicles with vmax

do not move at all in this new coordinate system, and slower vehicles move backwards (= to the left).

(2) A reversal of direction, i.e., the vehicles which are moving backwards after part (1) of the transformation now

move to the right. Note that this causes a change of sign before the nonlinear term { which does not have any

explanatory value except that it brings Eq. 16 exactly to the form treated by Burgers.

This equation has been investigated in great detail by Burgers [71] as the simplest non-linear di�usion equation. The

stationary solution is a uniform density �(x; t) = const. A single disturbance from this state evolves over time into a

characteristic triangular structure with amplitude � t�1=2, width � t1=2, bent to the right such that the right side of

the disturbance becomes discontinuous, and moving to the right with velocity c = j0 = 2 � vmax.

When interpreting this for tra�c jams, one has to re-transform the coordinates. Jams can then move both to the left

or to the right (with velocities between vmax and �vmax), and the discontinuous front develops at the in
ow side of

the jam, i.e. where the vehicles enter the jam. One sees that this solution is just the solution of the characteristics,

with a dissipating di�usion term added|as should be expected because of D > 0.

Some other versions of the Burgers equation have been investigated thoroughly [72{74]. Of interest in the context of

this paper are:
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Noisy Burgers equation: Adding a Gaussian noise term � to the equation (i.e. h�(x; t)�(x0; t0)i = �0 �(x�x
0) �(t�t0))

leads to the noisy Burgers equation

@t�+ 2 vmax �@x� = D@2x�+ � : (17)

This equation does no longer converge towards a homogeneous state.

Generalized Burgers equation: The nonlinearity of the Burgers equation can be generalized:

@t� =
X
�

b�@x�
� +D@2x� : (18)

Generalized Burgers equations with arbitrary � have been investigated [73,72].

F. Including momentum

The equations so far do not explain the spontaneous phase separation into relatively free and rather dense regions

of vehicles which is observed in real tra�c. To obtain this, one has to include the e�ect of momentum: One can

neither accelerate instantaneously to a desired speed nor slow down without delay. It becomes necessary to include

the momentum equation. Here, one has to specify the force term F=m, which describes acceleration and slowing

down. At least two properties are usually incorporated, which are called the \relaxation term" and the \interaction

term".

A �rst order approximation for the relaxation term is [19,18]

1

�
(V (�) � v); (19)

where V (�) is the desired average speed as a function of density, and � is a relaxation time. This choice yields

exponential relaxation towards the desired speed. The function V (�) has to be speci�ed externally, for example from

measurements.

A commonly used interaction term [75{77,19,18] is

�
c20
�
@x� : (20)

The meaning is that one tends to reduce speed when the density increases, even when the local density is still consistent

with the current speed.

A more formal possible derivation of the interaction term is as follows: 2 In real tra�c, the relaxation term actually

is asymmetric with respect to the vehicle position, e.g., say, _v(x) = 1

� [V (�x) � v] (see car-following section), where

�x is the front-bu�er-to-front-bu�er distance to the next vehicle ahead.

After approximating V (�x) by V (�(x +�x=2)) and then Taylor-expanding, one obtains

2I got the idea for this argument from B.S. Kerner.
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1

�
[V (�x)� v] �

1

�
[V (�(x)) � v] +

1

�
�xV 0(�(x)) @x� ; (21)

thus obtaining a formal justi�cation of the interaction term � @x� out of the asymmetry of the relaxation term.

c0 is treated as constant; in tra�c, a typical value for c0 is 15 km/h [20].

Formally, the interaction term is similar to the pressure term of compressible 
ow, �(1=�)@xp, where p is the pressure.

Assuming an ideal gas (p = �RT ) and isothermic behavior T = const, one obtains waves similar to sound waves as

a solution of the linearized equations.3 This leads to Eq. 20, where c0 is the speed of the \sound" waves. (See below

for a short discussion.)

Note that sound waves move in both directions from a disturbance, which means that sound waves alone are not a

good explanation for freeway start-stop-waves, contrary to what is sometimes written [78].

Taking all this together, a possible momentum equation for tra�c therefore is [19]

@tv + v@xv = �
c20
�
@x�+

1

�
[V (�) � v] + �@2xv : (22)

Since one now has two variables, one also needs an equation of continuity to close the system:

@t� + @x(� v) = D @2x� : (23)

Usually, D is set to zero.

For this equation, the homogeneous solution (v; �) � (v0; �0) is unstable for densities near maximum
ow for a suitable

choice of parameters. Using the methods of nonlinear dynamics, K�uhne and coworkers [19,22,21] went beyond linear

stability analysis (see also [93,80]). One �nds a multitude of stable or unstable �xpoints and limit cycles which suggest

that tra�c near maximum 
ow operates on a strange attractor. This can lead to quasi-periodic behavior, exactly as

is observed in tra�c measurements.

Earlier work [75,18] has analyzed the same equation without viscosity (� = 0).

G. Discussion of 
uid-dynamical approaches

Fluid-dynamical models have been used in tra�c science for a long time, with considerable success. But they have

shortcomings. Some of the major points are:

(i) One has to give externally the relation between speed or current and density. This is unsatisfying in terms of the

development of a theory. But an even more intricate problem is that there is no agreement on a functional form of

the speed-density relation; it is even under discussion if this relation is at all continuous [13,81].

(ii) Microscopically, temperature parameterizes the random 
uctuations of particles around their mean speed: T /

hv2i � hvi2. For gases, 
uctuations and therefore temperature increase with density. For granular media such as

vehicular tra�c or sand, 
uctuations decrease with density (i.e. inside a jam) { it has been claimed that exactly this

3True sound waves, though, would assume the gas to behave adiabatic, i.e. p / ��.
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inverse temperature e�ect is responsible for clustering [82]. In this way, assuming isothermic instead of adiabatic

behavior as done for the momentum equation seems only half the way one has to go. Helbing [83] discusses this

further.

(iii) Helbing [83] also discusses the e�ect of excluded volume to take into account the spatial extension of vehicles.

(iv) Daganzo [84] claims that all second-order 
uid-dynamical models produce unrealistic behavior (such as backwards

moving vehicles caused by a di�usion term) and are therefore unsuitable for tra�c science.

Nonetheless, 
uid-dynamical approaches [76,19,22,21] give, for the �rst time, systematic insight into tra�c dynamics

near maximum 
ow beyond simple extrapolation of light and dense tra�c results. These results will be further

discussed near the end of this paper.

IV. DEFINITIONS OF PARTICLE HOPPING MODELS

This section de�nes several particle hopping models which are candidate models for tra�c. They all are commonly

de�ned on a lattice of, say, length L, where L is the number of sites. Each site can be either empty, or occupied by

exactly one particle. Also, in all models particles can only move in one direction. The number of particles, N , is

conserved except at the boundaries. For tra�c, particles model cars.

A. The Stochastic Tra�c Cellular Automaton (STCA)

The Stochastic Tra�c Cellular Automaton (STCA), which has been treated in a series of papers [43{56], is de�ned

as follows. Each particle (= car) can have an integer velocity between 0 and vmax. The complete con�guration at

time-step t is stored, and the con�guration at time-step t+1 is computed from that, i.e. using a parallel or synchronous

update. All cars/particles execute in parallel the following steps:

� Let gap = number of empty sites ahead.

� If v > gap (too fast), then slow down to v := gap, [rule 1]

else if (v < gap) (enough headway) and v < vmax, then accelerate by one: v := v + 1. [rule 2]

� Randomization: If after the above steps the velocity is larger than zero (v > 0), then, with probability p,

reduce v by one. [rule 3]

� Particle propagation: Each particle moves v sites ahead. [rule 4]

The randomization incorporates three di�erent properties of human driving into one computational operation: Fluc-

tuations at maximum speed, over-reactions at braking, and retarded (noisy) acceleration.

Note that, because of integer arithmetic, conditions like v > gap and v � gap+ 1 are equivalent.

When the maximum velocity of this model is set to one (vmax = 1), then the model becomes much simpler: Each

particle executes the following in parallel:

� If site ahead is free, move, with probability 1� p, to that site.
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Since the STCA shows di�erent behavior for vmax � 2 than for vmax = 1, we will distinguish them as STCA/1 and

STCA/2, respectively.

Due to the given discretization of space and time, proper units are often omitted in the context of particle hopping or

cellular automata models. Proper units here would be: [gap] = number of cells, [v] = number of cells per time step,

[t] = number of time steps, etc. For that reason, it is possible to write something like v < gap, which properly

would have to be v < gap=(time step). Note that one still needs conversion factors to convert, say, velocity from the

particle hopping model to a real world velocity, e.g. given in kilometers per hour. One should note, though, that every

computer program does such a thing. Numbers in computer programs are always unitless, and a proper conversion

to real world numbers has to be put in by the program designer.

B. The cruise control limit of the STCA (STCA-CC)

In the so-called cruise control limit of the STCA [51], 
uctuations at free driving, i.e. at maximum speed and undis-

turbed by other cars, are set to zero. Algorithmically, the velocity update (rules 1 to 3) of the STCA are replaced by

the following: For all cars do in parallel:

� A vehicle is stationary when it travels at maximum velocity vmax and has free headway: gap � vmax. Such a

vehicle just maintains its velocity.

� Else (i.e. if a vehicle is not stationary) the standard rules 1 to 3 of the STCA are applied.

Both acceleration and braking still have a stochastic component.

C. The deterministic limit of the STCA (CA-184)

One can take the deterministic limit of the STCA by setting the randomization probability p equal to zero, which

just amounts to skipping the randomization step. It turns out that, when using a maximum velocity vmax = 1, this

is equivalent [72] to the cellular automaton rule 184 in Wolfram's notation [85], which is why I will use the notation

CA-184/1 and CA-184/2.

Much work using CA models for tra�c is based on this model. Biham and coworkers [34] have introduced it for tra�c


ow, with vmax = 1. Other authors base further results on it [28,36,37,39,40,43]. Some [28,40] also use it with vmax

larger than one. It is also the basis of the two-dimensional CA models for tra�c (e.g. [64{66]).

D. The cruise control version for the CA-184 (CA-184-CC)

Takayasu and Takayasu [42] introduced a di�erent CA model which is e�ectively equivalent to a deterministic cruise

control situation for CA-184/1. This may not be obvious from the rules, but it will become clear from the dynamic

behavior summarized later. Since they use only maximum velocity vmax = 1, the rules are short: For all particles do

in parallel:

� If v = 1 and the site ahead is free (gap � 1), then move one site ahead.
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� A particle at rest (v = 0) can only move when gap � 2.

Generalizations to maximum velocity larger than one are straightforward, but do not seem to lead to additional

insight.

E. The Asymmetric Stochastic Exclusion Process (ASEP)

The probably most-investigated particle hopping model is the Asymmetric Stochastic Exclusion Process (ASEP). Its

behavior is de�ned as follows:

� Pick one particle randomly. [rule 1]

� If the site to the right is free, move the particle to that site. [rule 2]

The ASEP is closely related to CA-184/1 and STCA/1 (i.e. both with maximumvelocity one). The di�erence actually

only is in the manner in which sites are updated. CA-184 and STCA update all sites synchronously, whereas ASEP

uses a random serial sequence.

In order to compare the ASEP with the other, synchronously updated models, one has to note that, in the ASEP,

on average each particle is updated once after N single-particle updates. A time-step (also called update-step or

iteration) in the ASEP is therefore completed after N single-particle updates (= N attempted hops).

It has been noted in Ref. [72] that changing the update from asynchronous to synchronous, i.e. going from ASEP

to CA-184/1, changes the dynamics considerably. In this paper, I will in addition show that re-introducing the

randomness via the randomization (rule 4) in the STCA again leads to di�erent results.

A systematic way of reducing the noise for the ASEP could be done using techniques described byWolf and Kertesz [86],

i.e. by putting a counter on each particle and move it only after k trials. For large k it becomes more and more

improbably that one particle is moved twice while a neighboring particle is not moved at all during that time. Taking

the limit k!1 then reduces the ASEP to the CA-184 process in a smooth way.

One can also de�ne higher velocities for the ASEP by simply replacing ASEP{rule 2 by STCA/2{rules 1, 2, and 4.

In such a case, each particle has to remember its velocity v from the last move.

V. PARTICLE HOPPING MODELS, FLUID DYNAMICS, AND CRITICAL EXPONENTS

Both for the ASEP/1 and for the CA-184/1, 
uid-dynamical limits and critical exponents are well known (see, e.g.,

[74,72,87,73]). The most straightforward way to put the concept of critical exponents into the context of tra�c 
ow

is to consider \disturbances" (i.e. jams) of length x and ask for the time t to dissolve them. For example, one would

intuitively assume that a queue of length x at a tra�c light which just turned green would need a time t proportional

to x until everybody is in full motion. By this argument, the dynamic exponent z, de�ned by t � xz, should be one.

Yet, there may be more complicated cases. Imagine again a queue at a tra�c light just turned green but this time

there is also some fairly high in
ow at the end of the queue. The jam-queue itself will start moving backwards,

clearing its initial position in time t � x. However, the dissolving of the jam itself may be governed by di�erent rules.

An example for this will be given in the following.
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A. ASEP/1

It can be shown that the classic asymmetric stochastic exclusion process (ASEP) corresponds to the noisy Burgers

equation (see, e.g., [72,73]). More precisely, the hydrodynamic limit of the particle process is a di�usion equation

@t�+ @xj = D@2x� + � with a current [72,88,89] of j = � (1 � �). This yields

@t� + @x� � @x�
2 = D@2x� + � ; (24)

which is exactly the Lighthill-Whitham-Greenshields case with noise and di�usion described earlier. In other words,

the ASEP/1 particle hopping process and the Lighthill-Whitham-theory (plus noise plus di�usion), specialized to the

case of the Greenshields 
ow-density relation, describe the same behavior.

In the steady state, this model shows kinematic waves (= small jams), which are produced by the noise and damped

by di�usion (Fig. 1). These non-dispersive waves move forwards (wave velocity c = j0 = 1� 2� > 0) for � < 1=2 and

backwards (c < 0) for � > 1=2 (Fig. 2). At � = 1=2, the wave velocity is exactly zero (c = 0), and this is the point

of maximum throughput [90]. If tra�c were modeled by the ASEP, then one could detect maximum tra�c 
ow by

standing on a bridge: Jam-waves moving in 
ow direction indicate too low density (cf. Fig. 1), jam-waves moving

against the 
ow direction indicate too high density.

The ASEP is one of the cases where clearing a site follows a di�erent exponent than dissolving a disturbance.4 As long

as � 6= 1=2, a disturbance of size x moves with speed c 6= 0 and therefore clears the initial site in time t � c �x � x1, i.e.

with dynamical exponent z = 1. In order to see how the disturbance itself dissolves, one transforms into the coordinate

system of the wave velocity. One conventionally does that by �rst separating between the average density h�iL and

the 
uctuations �0. By inserting � = h�iL + �0 one obtains

@t�
0 + (1� 2h�iL) @x�

0 � 2 �0 @x�
0 = D @2x�

0 + � : (25)

When transforming this into the moving coordinate system x0 = x+ (1� 2h�iL) � t, one obtains

@t�
0 � 2 �0 @0x�

0 = D @02x �
0 + � ; (26)

which is the classic noisy Burgers equation.

Note that this transformation is di�erent from the Musha transformation Eq. 15. As a formality, we do not change

the sign of the x-direction here and in consequence not the sign of the non-linear term. More important, we transform

into a coordinate system moving with the speed of the waves, and this time �nd that the 
uctuations of the system

also obey the Burgers equation.

For this equation it is well known that the dynamical exponent is z = 3=2 (\KPZ" exponent). In other words, in the

original coordinate system a disturbance four times as big as another one, x0 = 4x, needs t0 � x0 = 4x � 4t, i.e. four

times as much time to clear the site, but t0 � x03=2 = (4x)3=2 � 8t, i.e. 8 times as much time until the jam-structure

itself is no longer visible in the noise. A precise treatment of this uses, e.g., correlations between tagged particles [74].

4Note that technically, all these remarks are only valid for small disturbances. When the system is not close to the steady
state, one sees transient behavior which may be di�erent [72].
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The drawback of this model with respect to tra�c 
ow is that it neither has a regime of laminar 
ow nor has \real",

big jams. Because of the random sequential update, vehicles with average speed v 
uctuate severely around their

average position given by v t. As a result, they always \collide" with their neighbors, even at very low densities,

leading to \mini-jams" everywhere. This is clearly unrealistic for light tra�c.

Actually, this fact is also visible in the speed-density-relation. Using the Greenshields 
ow-density relation, one

obtains

v =
j

�
/ 1� � : (27)

This is in contrast to the observed result that, at low densities, speed is nearly independent of density (practically no

interaction between vehicles).

B. ASEP/2

Judging from space-time plots (see Figs. 1 and 2), changing the maximum velocity in the update from vmax = 1 to

vmax � 2 does not change the universality class [54]. It skews the 
ow-density-relation towards lower densities, but

does not lead to other phenomenological behavior.

C. CA-184

Using a maximum velocity higher than one does not change the general behavior of CA-184. It therefore makes sense

to directly discuss the general case.

As explained above, the CA-184/1 is the deterministic counterpart of the ASEP/1. But taking away the noise from

the particle update completely changes the universality class (i.e. the exponent z) [72]. The model now corresponds

to the non-di�usive, non-noisy equation of continuity

@t�+ j0 @x� = 0 (28)

with a (except at � = �jmax) linear 
ow

j0 =
dj

d�
=

�
vmax for � < �jmax

�1 for � > �jmax.
(29)

The intersection point of the fundamental diagram divides two phenomenological regimes: light tra�c (� < �jmax)

and dense tra�c (� > �jmax).

A typical situation for light tra�c is shown in Fig. 3 (with vmax = 5). After starting from a random initial condition,

the tra�c relaxes to a steady state, where the whole pattern just moves vmax = 5 positions to the right in each

iteration. Cars clearly have a tendency of keeping a gap of � vmax = 5 between each other. As a result, the current,

j, in this regime is

j< = � � vmax : (30)
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The velocity of the kinematic waves in this regime is c< = j0< = vmax. This means that disturbances, such as holes,

just move with the tra�c, as can also be seen in Fig. 3.

Dense tra�c is di�erent (Fig. 4). Again starting from a random initial con�guration, the simulation relaxes to a

steady state where the whole pattern moves one position to the left in each iteration. Note that cars still move to

the right; if one follows the trajectory of one individual vehicle, for this car regions of relatively free movement are

alternating with regions of high density and slow speed. Although in a too static way, this captures some of the

features of start-stop-tra�c. The average speed in the steady state equals the number of empty sites divided by the

number of particles: hviL = (L �N )=N ; the current is j> = � � hviL, or, with � = N=L,

j> = 1� � : (31)

This straight line intersects with the one from light tra�c at � = 1=(1 + vmax), which is therefore the density

corresponding to maximum throughput jmax = vmax=(1 + vmax).

The velocity of the kinematic waves in the dense regime is j0> = �1, which corresponds to the backwards moving

pattern in Fig. 4.

Since the second term of Eq. 28 (with 29) is (except at � = �jmax) linear in the density, these are linear Burgers

equations, and the dynamic exponent z is equal to 1 [72].

More precisely, in terms of tra�c the following happens: The out
ow of a jam in this model always operates at 
ow

jout = jmax and density �out = �jmax. The time t until a jam of length x dissolves therefore obeys the average relation

t / x=(jmax � jin), where jin is the average in
ow to the jam. Since j / � for � � �jmax, one can write that as

t /
x

�jmax � �(jin)
: (32)

This means that for � < �jmax, the critical exponent z is indeed one, but at � = �jmax, t diverges. This e�ect is also

visible when disturbing the system from its stationary state [28]: The transient time ttrans until the system is again

stationary scales as

ttrans �
1

�jmax � �
: (33)

The scaling law (33) is actually also true for � > �jmax, albeit for a di�erent reason with a slightly more complicated

phenomenology. See [28] for more details.

Two observations are important at this point:

(i) Many papers in the physics literature [28,34,36,37,39{41,43] use this model for their investigations. Also the 2-d-

grid models (see, e.g., [64{66]) essentially use this model for the one-dimensional part of their movements, although the

two-dimensional interactions seem to change the 
ow-density relationship [105]. The CA-184 model lacks at least two

features which are, as I will argue later, important with respect to reality: (a) Bi-stability: Laminar 
ow above a certain

density becomes instable, but can exist for long times. CA-184 does not display this bi-stability. (b) Stochasticity:

CA-184 is completely deterministic, i.e. a certain initial condition always leads to the same dynamics. Real tra�c,

however, is stochastic, that is, even identical initial conditions will lead to di�erent outcomes, and a model should be

capable of calculating some distribution of outcomes (by using di�erent random seeds).
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(ii) The so-called cell transmission model [91], which has been proposed for tra�c applications, technically is a

discretization of the Lighthill-Whitham-theory. It turns out that this model is similar to Eq. 28 with 29, especially

with respect to the range of physical phenomena which are represented. The only di�erence is that the j-�-relation

of Ref. [91] has a 
at portion at maximum 
ow instead of the single peak of Eq. 29. That means that in the cell

transmission model low density and high density tra�c behave similarly to CA-184, but tra�c at capacity has a

regime where waves do not move at all.

Using other j-�-relations in discretized Lighthill-Whitham-models (e.g. [92,93]), will lead to other relations for the

wave speeds, but the range of physical phenomena (backwards or forwards moving waves) which can be represented

will always resemble CA-184; especially, neither the bi-stability nor the stochasticity can be represented.

D. CA-184-CC

No 
uid-dynamical limits for the other particle hopping models are known. Yet, results for the jam dynamics for the

cruise control situations [42,51] o�er valuable insights.

The important new feature of the cruise control version of CA-184 is a bi-stability [42]. Using vmax = 1 in this

section (vmax > 1 does not seem to o�er additional insight), this bi-stability occurs between two densities, i.e. for

�c1 < h�iL < �c2 = 1=2, where h�iL := N=L, and, for vmax = 1, �c1 = 1=3 and �c2 = 1=2. h:iL means the average

over the whole (closed) system of length L. In this range, some initial conditions lead to laminar 
ow but others lead

to tra�c including jams. Takayasu and Takayasu determined that density-velocity relations converge to two types

which depend upon initial conditions:

(i) Starting with maximally spaced particles and initial velocity v = 1, one �nds stable con�gurations with 
ow

hjiL = h�iL � vmax = h�iL for low densities h�iL � 1=2 =: �c2. However, for high densities h�iL > �c2, a jam phase

appears for all initial conditions since not all particles can keep gap � 1. Once a jam has been created, all particles

in the out
ow of this jam have gap = 2. For t!1, this dynamics reorganizes the system into jammed regions with

density � = 1 and zero current j = 0, and laminar out
ow regions with �out = 1=3 and jout = 1=3. Simple geometric

arguments then lead, for the whole system, to hjiL = (1 � h�iL)=2 and hviL = (1=h�iL � 1)=2.

(ii) Starting, however, with an initial condition where all particles are clustered in a jam, this jam is only sorted out

up to h�iL � 1=3 =: �c1, leading to hjiL = h�iL and hviL = 1. For h�iL > �c1, the initial jam survives forever, yielding

hjiL = (1 � h�iL)=2 and hviL = (1=h�iL � 1)=2. One observes that, for �c1 < h�iL < �c2, this initial condition leads

to a di�erent �nal 
ow state than the initial conditions in (i). | Note that �c1 is equal to the out
ow density �out.

Starting from an arbitrary initial condition, the density-velocity relation converges to one of the above two types.

Note that up to before this section, all relations between j, v, and � were also locally correct, which is why averaging

brackets were omitted. Now, this is no longer true. For example densities slightly above �c2 do not really exist on a

local level; they are only possible as a global composition of regions with local densities � = �c1 plus others with local

densities � = 1.

Since the model is deterministic, one can calculate the behavior from the initial conditions. For any particle i with

initial velocity v = 0 one can determine the in
uence i has on particles \behind it" (i+1; i+2; : : :). For particle i+ k

to be the �rst one not to be involved in the jam caused by i, one needs the average gap between i and k to be larger

than two. This corresponds to a density between i and k of �ik < 1=(gap+ 1) = 1=3 = �c1. The sequence (gapi+j)j

describes a random walk, which is positively (negatively) biased for � > �c1 (� < �c1), and unbiased at the critical
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point � = �c = �c1 [42].

E. STCA-CC/1

The cruise control limit of the STCA combines properties of the CA-184 and the full STCA. Since the STCA-CC has

no 
uctuations at free driving, the maximum 
ow one can reach is with all cars at maximum speed and gap = vmax.

Therefore, one can manually achieve 
ows which follow, for � � �c2, the same j-�-relationship as the CA-184, where

�c2 now denotes the density of maximum 
ow of the deterministic model CA-184, i.e. �c2 = 1=(vmax + 1).

Above a certain �c1, these 
ows are unstable to small local perturbations. This density will turn out to be a \critical"

density; for that reason I will use the notation �c � �c1. Many di�erent choices for the local perturbation give rise to

the same large scale behavior. The perturbed car eventually re-accelerates to maximum velocity. In the meantime,

though, a following car may have come too close to the disturbed car and has to slow down. This initiates a chain

reaction { an emergent tra�c jam.

It is straightforward to see [51] that n(t), the number of cars in the jam, follows a usually biased, absorbing random

walk, where n(t) = 0 is the absorbing state (jam dissolved): Every time a new car arrives at the end of the jam, n(t)

increases by one, and this happens with probability jin, which is the in
ow rate. Every time a car leaves the jam

at the out
ow side, n(t) decreases by one, and this happens with probability jout. When jin = jout, n(t) follows an

unbiased absorbing random walk. jin 6= jout introduces a bias or drift term / (jin � jout) � t.

This picture is consistent with Takayasu and Takayasu's observations for the CA-184-CC model. The main di�erence

is that now both the in
ow gaps and the out
ow gaps form a random sequence. Another di�erence is conceptual:

Takayasu and Takayasu have looked at the transient time starting from initial conditions, rather than looking at jams

starting from a single disturbance. The latter approach [51] leads to a cleaner picture of the tra�c jam dynamics

because it concentrates on the transition from laminar to start-stop-tra�c which is observed in real tra�c.

The statistics of such absorbing random walks can be calculated exactly. For the unbiased case one �nds that

hn(t)i � t� ; Psurv(t) � t�� and hw(t)isurv � t�+� ; (34)

where Psurv is the survival probability of a jam until time t, w(t) means the width of the jam, i.e. the distance between

the leftmost and the rightmost car in the jam. h:i means the ensemble average over all jams which have been initiated,

and h:isurv means the ensemble average over surviving jams. For the critical exponents, one �nds as well from theory

as from numerical simulations � = 1=2 and � = 0.

� = 0 re-con�rms that, at the critical density �c, jams in the average barely survive (unbiased random walk).

If one now uses jin as order parameter, and, say, Psurv(t) as control parameter, then we have a second order phase

transition, where

Psurv(t)

(
= 0 for jin < jout and t!1,
� t�� for jin = jout and t!1, and
= const for jin > jout and t!1.

(35)

For that reason, we call jc := jout the critical 
ow, and the associated density �c := �(jc) the critical density.

It is important to note that jin > jout as a stable, longtime state is only possible with the particular de�nition of the

cruise control limit and the use of an open system. If one would use a closed system (periodic boundary conditions,
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i.e. tra�c in a loop), the out
ow of the jam would eventually recirculate around loop and become the in
ow of the

jam (see Fig. 5), leading to the situation jin = jout; if one relaxes the cruise control assumption, eventually other jams

would form upstream of the one under consideration, and the out
ow of these jams would eventually be the in
ow of

the jam under consideration, again leading to jin = jout.

Deviations from the cruise control limit will be addressed later; let us now consider a closed system:

� For � < �c and arbitrary initial conditions, jams are ultimately sorted out. Then, every car has velocity v = vmax

and gap � vmax, is thus in the free driving regime as de�ned above.

� For �c � � � �c2, the long-time behavior depends on the initial conditions. For example, even in the extreme

case of � = �c2, the state where every car has velocity v = vmax and gap = vmax is stable and results in a 
ow of

j = vmax � �c2. However, most other initial con�gurations will lead to jams, and for the limit of in�nite system

size, at least one of them never sorts out.

� For � > �c2, all initial conditions lead to jams.

Note that this is again consistent with the results of Takayasu and Takayasu for the CA-184-CC system [42].

F. STCA-CC/2

Replacing maximum velocity vmax = 1 by vmax � 2 does not change the critical behavior, but it adds a compli-

cation [51]. Now, jam clusters can branch, with large jam-free holes inbetween branches of the jam. As a result,

space-time plots of such jams now appear to show fractal properties, and in simulations at the critical density w(t)

does not follow any longer a clean scaling law, whereas n(t) and Psurv still do.

The explanation for this is that the holes in the jam are large enough to cause logarithmic corrections to the width,

but not large enough to make it completely fractal. More precisely, the hole size distribution Ph(x), i.e. the probability

to �nd a hole of size x in a given equal time cut (= jam con�guration) scales as

Ph(x) � x��h ; (36)

where both from a theoretical argument and from simulations �h = 2. Yet, it is known that for �h � 2 the fractal

dimension for such a con�guration is Df = �h � 1 (see, e.g., [94]). In this sense, such a tra�c jam cluster operates at

the \edge of fractality".

And such a hole size distribution causes logarithmic corrections to the width when n(t) is given: hw(t)isurv �

hn(t)isurv (1 + c log t) :

G. STCA/1

For the STCA at vmax = 1, from visual inspection (see Fig. 7) individual jams are not distinguishable here. Instead,

the space-time plot looks much more like one from the ASEP.

The visual observation is con�rmed by theoretical analysis. Schreckenberg, Schadschneider, and coworkers [53{55]

have performed analytical calculations for the stationary state throughput j given � in a closed system using n-point
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correlations (n-cluster method) and found that for vmax = 1 this analysis is already exact for n = 2. This is no

longer true for higher vmax. For the ASEP, for the same analysis, the mean-�eld approximation, i.e. n = 1, is already

exact. The di�erence between the ASEP and the STCA/1 in this analysis is that in the STCA/1 one �nds an e�ective

repulsive force of range one between particles, caused by the parallel update. This helps to keep particles more

equidistant than in the ASEP case, thus leading to a higher 
ow.

H. STCA/2

For vmax � 2, the n-cluster analysis no longer leads to an exact solution, indicating a di�erent dynamical regime. (In

practice, though, the n-cluster analysis is already fairly close to simulation results for n ' 5.) Visual inspection of

space-time plots con�rms that the dynamics now is much more similar to the cruise control limit, i.e. to STCA-CC/2,

than to the ASEP. Except that here multiple jams exist simultaneously. Jams start spontaneously and independently

of other jams because vehicles 
uctuate even at maximum speed, as determined by a parameter pfree 6= 0.

The STCA displays a scaling regime near the density of maximum throughput �jmax. There is an upper cuto� at

t ' 104 which was observed to depend on pfree [47]. One can attribute this cuto� to the non-separation of the time

scales between disturbances and the emergent tra�c jams [51]. As soon as pfree is di�erent from zero, the spontaneous

initiation of a new jam can terminate another one. Obviously, this happens more often when pfree is high, which

explains why the scaling region gets longer when one reduces pfree.

In other words, in the cruise control limit, there is a percolation-type phase transition at �c = �jmax. Using a pfree

larger than zero introduces an upper cut-o� into this phase transition. This upper cut-o� should scale with pfree,

and it should destroy the long-range connectivity of the jam clusters. This is con�rmed by earlier simulations [47].

One would, though, expect that there is still a \connectivity transition" at higher densities, where, in spite of pfree > 0,

jam clusters connect to an in�nite network [95]. Cs�anyi and Kert�esz [45] �nd such a long-range connectivity of jams

in the STCA/2 (using p = 1=4) at densities much higher than �jmax. Further analysis is necessary to clarify the exact

nature of this \connectivity transition".

A helpful analogy for understanding the phase separation into laminar and jammed tra�c is droplet formation in a

gas-liquid transition [96], where gas corresponds to the laminar phase and the droplets correspond to the jams. The gas

always \tests" (in 
uctuations) simultaneously at many positions if droplets can survive, similar to pfree > 0, which

tests of jams can survive. When one neglects surface tension, then droplets cannot survive at sub-critical density,

they can survive at supercritical density, and they barely survive exactly at the critical density, making macroscopic


uctuations maximal at this point. | Note that neglecting the surface tension of the droplets changes the nature of

the phase transition from �rst order to second order.

VI. GOING BEYOND: TRAFFIC JAM DYNAMICS

All these results together put us into a position to draw a fairly consistent picture of tra�c jam dynamics.
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A. An intuitive starting point

Measurements of human driving behavior show that over a fairly large velocity range, gap is proportional to velocity.

gap here is �x�L, where �x is the front-bumper-to-front-bumper distance (= distance headway) between two cars,

and L is the length one car occupies (in the average) in a jam. This makes intuitively a lot of sense, since it re
ects

the fact that the time gap should be approximately the same as the delay time T which is needed between seeing the

brake lights and actually starting to brake, and should therefore be largely independent of velocity (Pipes' theory,

cf. [11]).5

Field studies (cf. [11]) indeed con�rm that the delay time is approximately constant for velocities between 15 and

40 miles per hour (between 24 and 64 km/h, data from the 1950s). This delay time consists of several components,

including, e.g., reaction time or the time needed for actually pressing the brake pedal, and it is of the order of one

second.

Therefore, one can assume gap = T � v. Using the average relations 1=�x = � and 1=L = �jam (density inside a jam),

we obtain

v =
1

T

�
1

�
�

1

�jam

�
: (37)

Thus, for high density, for the current j one has

jhigh = � v =
1

T

�
1�

�

�jam

�
: (38)

For low density, one can assume that there is some (average) vmax which is independent of gap for large enough

spacings, and therefore, for low densities

jlow = � vmax : (39)

At jc2 and �c2 , these two curves intersect and thereby de�ne the maximum 
ow according to this model. Assuming,

say, vmax = 120 km/h, T = 1:1 sec, and L = 7:5 m, one obtains �c2 � 1=45 m and jc2 � 2650 vehicles per hour per

lane, which is slightly above the highest 5-minute-averages which are obtained in reality (e.g. [13,97]).

This model is essentially equivalent to the CA-184/2 particle hopping model.

As a side remark, tra�c security experts teach drivers that one should reach the position of the car ahead only after

more than two seconds, which is independent of velocity and re
ects the fact that time headway is approximately

equal to time gap. It is interesting to see that this would actually lead to a maximum current of 2 cars per second or

1800 cars per hour, much less than the up to 2400 cars per hour which are observed.

5Note that tra�c science traditionally does not include some \security space" into the de�nition of L [11]; therefore \gap"
and \time gap" are somewhat di�erent here.
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B. More realistic tra�c jam dynamics

Yet, as argued further above, real tra�c behaves di�erently from this characterization from this characterization. At

high densities, we do not observe the homogeneous velocity v = gap=T as predicted by the intuitive argument above,

but relatively free 
ow which is interspersed by start-stop-waves. This is con�rmed by measurements of the j-�-

relation, where, instead of lining up on a single curve, the measurements form a fairly scattered data cloud especially

in the region of the 
ow maximum.

For an open system, the explanation of this is as follows. Due to small 
uctuations, laminar tra�c at all densities

will always exhibit small disturbances which can develop into jams. The in
ow to the jam determines whether a jam

is potentially long-lived or not: Since the average out
ow jout is �xed by the driving dynamics, jin > jout makes the

jam (in the average) long-lived, jin < jout not. jin = jout de�nes a critical point, i.e. jc � jout and �c � �out, where

tra�c jam clusters in the average barely survive, as e.g. quanti�ed by hn(t)i = t� with � = 0.

All this is true for an open system, or a closed system which is large enough and where times are short enough so that

its closed boundaries are not felt. Conversely in a closed system, the jams ultimately absorb all the excess density

�excess = � � �c. As a result, all tra�c between jams operates at �c.

Average measurements of the long time behavior of tra�c 
ow can therefore show no higher 
ow values than jc = jout.

In this situation, the gas-liquid analogy (without surface tension) again is helpful. Gas can also be brought into a

super-cooled regime, for example by increasing the density while keeping the temperature constant. But this state is

only meta-stable, and eventually droplets will form and, in a closed system, absorb excess density until the density

surrounding the droplets is exactly at the critical point (without surface tension!).

This dynamical picture explains the high variations in the short time measurements. Measuring at a �xed position

in a situation like in Fig. 8, one can measure arbitrary combinations of supercritical laminar tra�c, critical laminar

tra�c, jams, or tra�c during acceleration or slowing down. See Fig. 9 for a comparison between short-time (300 time

steps) averages and a schematic picture. Data points along the (a) branch belong to stable and laminar tra�c. Data

points along the (c) branch belong to still laminar, but only meta-stable tra�c. Data points along the (d) branch

belong to creeping high density tra�c.

All other data points are mixtures between regimes, where two or more regimes have been captured during the

300 iterations interval. Essentially, these data points should lie between point (b) and branch (d), yet, due to high


uctuations and due to the e�ects of acceleration and braking, which are not captured in the steady state arguments,

we observe huge 
uctuations. For example, when a car is just leaving a jam, the density decreases, but the velocity

adaption is lagging somewhat behind. Therefore, the car has too low speed for the given density, leading to too low

a 
ow value.

This scenario also makes precise the hysteresis argument of Treiterer and coworkers [98], also con�rmed later [81,97].

Their measurements con�rm the idea that the tra�c density can go above the critical point while still being laminar,

similar to the gas which can be super-cooled by increasing the density. Yet, both for tra�c and for super-cooled gases,

this state is only meta-stable and eventually leads to a phase separation into jams and laminar 
ow. Quantitative

evidence of this will be given in a separate paper (in preparation).

Ref. [81] in addition uses catrastophe theory to interpret the measurements. Although the idea is similar in spirit to

the gas-liquid analogy mentioned above, a detailed comparison does not seem possible.

The picture is also consistent with recent results both in 
uid-dynamical models and mathematical car-following mod-

els for tra�c 
ow. In Ref. [76], tra�c simulations using a 
uid-dynamical model starting from nearly homogeneous
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conditions eventually form stable waves. The 
uid-dynamical model one can, by usual linearization, �nd the parame-

ters for the onset of instability. What is hn(t)i � t� in the particle hopping model becomes the amplitude A(t) � e�t

in the 
uid-dynamical model, and at the onset of instability A = const is similar to hn(t)i = const (since � = 0).

Therefore, the wave in the 
uid-dynamical model corresponds to the average jam-cluster in the particle-hopping

model.

Lee [99] explains the underlying mechanism for a model for granular media. He distinguishes \dynamic" from \kine-

matic" waves. Dynamic waves are found in the K�uhne/Kerner/Konh�auser equations (Eqs. 22 and 23) when the

relaxation time � > 0; they are similar to sound waves in gases. Kinematic waves are found in the same equations

when � ! 0, in which case the equations reduce to the Lighthill-Whitham case. The wave formation mechanism thus

is that the instability �rst triggers the \sound" wave. The density inside the wave increases and outside the wave

decreases until both densities are outside the instable range. Then the kinematic mode takes over.

Kurtze and Hong [80] make this more precise for the K�uhne/Kerner/Konh�auser equations: Below the critical density,

the kinematic wave with wave velocity c = j0 = dj=d� is the only solution of the linearized equation, and this solution

is stable. At the critical density, this solution bifurcates into two unstable solutions with wave velocity c = j0 � �,

where �! 0 for �& �c, and � is the equivalent of the speed of sound.

Actually, things might be somewhat more complicated. Kerner and Konh�auser also �nd a large amplitude instability,

which exists already at lower densities than the instability obtained from the linearized equations [77]. That opens

the discussion, which of these two instabilities corresponds to the instability of the STCA | or if such a detailed

comparison is possible at all. Intuitively, one would assume that the large amplitude instability is the relevant

instability for a noisy system such as the STCA.

Bando and co-workers [26] also �nd the separation of tra�c into laminar and jammed phases in a deterministic

continuous mathematical car-following model.

VII. SUMMARY AND CONSEQUENCES FOR TRAFFIC SIMULATION MODELS

These �ndings have some fairly far-reaching implications for tra�c simulation models.

(i) Robust numerics: Particle hopping models, which seem at the �rst glance as too rough an approximation of

reality, include the same range of dynamic phenomena as the most advanced 
uid-dynamical models for tra�c 
ow

to date. Yet, particle hopping models o�er some distinctive advantages for practical simulations. Particle hopping

models are known to be numerically robust especially in complex geometries, and realistic road networks with all their

interconnections etc. certainly are complex geometries. Practical road network implementations of the 
uid-dynamical

theory are so far only using the Lighthill-Whitham equations, which are (without di�usion) marginally stable and can

certainly be made stable by using a stable numerical discretization scheme.

(ii) \Universality": Intuitively, a relatively simple microscopic model should be able to show the essential features

of tra�c jams. One might even speculate that the critical exponents of tra�c jam formation are universal, i.e. robust

against changes in microscopic rules. This speculation is backed up by the fact that the exponents of our model can be

theoretically explained. The consequence for tra�c simulation is that, as long as one expects certain simple aspects

of tra�c jam formation to be realistic enough for the problem under consideration, e.g. for large scale questions, the

simplest possible model will be su�cient for the task, thus saving human and computational resources.

(iii) Towards minimal models: The present results show that close-up car-following behavior is not the most
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important aspect of tra�c to model. The important crucial aspect is to model deviations from the optimal (smooth)

behavior and the ways in which they lead to jam formation. Another important aspect, which seems far from obvious,

is the acceleration behavior, especially when there are other cars ahead, since it is the acceleration behavior which

mostly decides about maximum 
ow out of a jam (which may be a simple tra�c light!). Therefore, investigations

such as this paper are important for microscopic modeling as long as one does not have the perfect model of driving,

or not the computational resources to run it.

(iv) Tra�c dynamics: Fast running and easy to implement particle hopping models can be very useful in interpreting

measurements. Measurements such as for the traditional 5-minutes-averaged fundamental diagrams (
ow vs. density

vs. velocity) have increasingly recognized the fact that the dynamics around the measurement site has an extreme

in
uence on the outcome of the measurements, thus making the results far from universal. This point will be further

discussed in another paper (in preparation).

(v) Microscopic simulations: Particle hopping models are inherently microscopic, which allows to add individual

properties to each car such as identity of travelers, route plan, engine temperature (for emission modeling) etc. These

properties are imperative for the kind of tra�c models which are needed in current policy evaluation processes.

(vi) Stochasticity and 
uctuations: Last but not least, particle hopping models are stochastic in nature, thus

producing di�erent results when using di�erent random seeds even when starting from identical initial conditions. At

�rst, this is certainly considered a disadvantage from the point of view of policy makers or tra�c engineers. However,

the tra�c system is inherently stochastic, and the variance of the outcomes is an important variable itself. How will

we be able to distinguish reliable from unreliable predictions without knowing something about the range of possible

outcomes? | Furthermore, there is reason to believe that the average over several stochastic runs will not be identical

to a deterministic run. Imagine, for example, a case where in a deterministic model, a queue at one intersection has

a back-spill which in the average just does not reach another intersection.6 In the stochastic model, the maximum

length of this queue will, between di�erent simulation runs, 
uctuate around its average value, thus back-spilling into

the other intersection in nearly 50% of all runs. Since this possibly disrupts tra�c in this other intersection, this can

cause long-range e�ects and network breakdown.

VIII. SOME OPEN QUESTIONS

Many open questions remain, though. For example:

What is the exact relation between average cluster growth in CA models, wave amplitude growth in 
uid-dynamical

models, droplet growth in the liquid-gas transition interpretation, and phase space portraits in car following models?

Is there a hydrodynamical limit for the STCA? If so, how can it be proven to be correct? Do critical exponents help

here?

What is the exact relation to granular media? P�oschel has both observed and simulated similar waves for sand falling

down in a narrow tube [100]. He has also found in the simulations the bi-stability leading to laminar 
ow or to jam

waves depending on the initial conditions. Peng and Herrmann found similar waves in lattice gas automata simulations

of the same situation [102]. Lee and coworkers [101,99] have related these waves to a 
uid-dynamical theory which

is similar to the K�uhne/Kerner/Konh�auser theory for tra�c 
ow. Sch�afer �nds a similar phase transition as the one

6By queue I mean a queue with spatial extension. This is di�erent from the use of the word in queuing theory.
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stressed in this paper for simulated granular 
ow, except that above the critical point, the 
ow is exactly zero [103];

supposedly, such a 
ow-density relation would also support the same overall dynamics.

What is the minimal ingredient for the instability which causes the tra�c breakdown? Both the car-following models

(CA and continuous) and the 
uid-dynamical approach have produced the instability after adding an inertia term.

Yet, Goldhirsch and Zanetti point out that an inverse temperature e�ect is responsible for the clustering [82].

What is the exact relation of particle hopping to car-following models, either continuous in space only, or continuous

in both space and time [38]? The range of phenomena which are captured seems comparable. Yet, on one hand, most

car-following models investigated so far do not include randomness; on the other hand, it is unclear what the better

resolution actually buys in terms of additional insight. Komatsu and Sasa [104] derive a 
uid-dynamical equation

from a car-following model.

Can one say more about universality than in the last section?

What can one-dimensional theory say about two-dimensional problems, such as they are regularly encountered for

urban tra�c problems? A series of papers (see, e.g., [64{66]) have used cellular automata techniques for building

models for town tra�c. These models use the CA-184/1 model for driving dynamics, but add elements for directional

changes. Molera and coworkers have built a theory for their two-dimensional model [105], and their 
ow equation is

essentially a 2-dimensional version of the Lighthill-Whitham equation with a quadratic 
ow-density relation. That

means that adding stochastic directional changes would change the model from CA-184 type to the ASEP type.

What is the relation to 1=f-noise? Musha and Higuchi have measured 1=f-noise in the power spectrum of a car

detector time series [23]. They explained this by a noisy Burgers equation, in a way though which di�ers from

Krug's interpretation [90]. Nagel and Paczuski [51] have predicted a precise 1=f law for the power spectrum of the

density time series, which was roughly con�rmed by simulations for STCA-CC/2. Yet, Nagel and Herrmann �nd,

using a continuous car-following model and following the tra�c movement, a 1=f� law, with � � 1:3 [106]. Car

following is slightly di�erent from the particle hopping models in this paper; but if the arguments in [51] were entirely

correct, this should not matter. Choi and Lee �nd 1=f-like behavior in simulations of slightly modi�ed versions of

the 
uid-dynamical equations for tra�c [107]; Zhang and Hu �nd 1=f-like behavior in simulations of a discrete-time-

continuous-space model [108] | Understanding 1=f noise behavior would be helpful because it would be much easier

to measure in reality than, say, lifetime distributions [47,51].

What is the meaning to the ongoing discussion about the value of synchronous updating for explaining physical

phenomena? Huberman and Glance [109] have re-issued the warning that parallel updating may produce artifacts

and that usually stochastic asynchronous updating would be a better approximation of reality. Yet, for the tra�c

case, it is clear from this paper that the (synchronous) STCA produces a much better model for reality than the

(asynchronous) ASEP. One would probably have to go to much higher spatial and temporal resolutions (and thus

loose all the computational advantages) when one wanted to build a stochastically updating model of tra�c.

This paper treats single-lane models only. It is though interesting to note that the empirical evidence which backs

up particle hopping models for tra�c [35] stems from multi-lane highways. I expect, also in agreement with our

multi-lane simulation results [57{62], that homogeneous multi-lane tra�c (symmetric lane-changing rules, all vehicles

the same) behaves similarly to the single-lane models presented here. Deviations from homogeneity will introduce

more and more additional e�ects which will have to be investigated in detail.
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FIG. 1. Space-time plot for random sequential update, vmax = 1 (ASEP/1), and � = 0:3. Clearly, the kinematic waves are
moving forwards. For � > 1=2, the kinematic waves would be moving backwards, and the plot would look similar to 2.

FIG. 2. Space-time plot for random sequential update, vmax = 5 (ASEP/5), and � = 0:3, showing that higher maximum
velocity does not lead to a di�erent appearance as long as one uses random sequential update.

FIG. 3. Space-time plot for CA-184/5 and subcritical density.

FIG. 4. Space-time plot for CA-184/5 and supercritical density.

FIG. 5. Space-time plot for STCA-CC/1, at supercritical density, with one disturbance. The jam �rst grows according to
n(t) � (jin � jout) � t. Eventually, via the periodic boundary conditions, the out
ow reaches the jam as in
ow, and n(t) follows
a random walk (apart from �nite size e�ects).

FIG. 6. Space-time plot for parallel update (cruise control limit), vmax = 5, � = 0:09, i.e. slightly above critical. The 
ow
is started in a deterministic, supercritical con�guration, but from a single disturbance separates into a jam and a region of
exactly critical density.|This is phenomenologically the same plot as Fig. 5 except that vmax = 5.

FIG. 7. Space-time plot for parallel update, vmax = 1.

FIG. 8. Space-time plot for parallel update, vmax = 5, � = 0:09 (i.e. slightly above �(jmax)), starting from ordered initial
conditions. The ordered state is meta-stable, i.e. \survives" for about 300 iterations until is spontaneously separates into
jammed regions and into regions with � = �(jmax).

FIG. 9. Flow-density fundamental diagrams for the STCA. Top: Simulation output from the STCA. Short-time averages
are taken over 300 simulation steps and thus mimic the 5-minute averages often taken in reality. Bottom: Schematical view.
(a) is the subcritical branch, (b) is the critical point, (c) is the supercritical branch, and (d) is the branch where tra�c only
creeps. 5-minute averages at densities between �c at (b) and the creep branch are mixtures between the dynamical regimes.
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